
CIS 363 MySQL

Chapter 21 Debugging MySQL Applications
Chapter 22 Basic Optimizations

Ch 21 Debugging MySQL Applications
  MySQL client programs produce diagnostic

messages when they encounter problems. If
problems occur when you attempt to connect to
MySQL Server with a client program or while the
server attempts to execute the SQL statements that
you send to it, MySQL produces diagnostic
messages.

  Diagnostics might be error messages to indicate
serious problems or warning messages to indicate
less severe problems. MySQL provides diagnostic
information in the following ways:

Ch 21 Debugging MySQL Applications
  An error message is returned for statements that fail:
 mysql> SELECT * FROM no_such_table;
 ERROR 1146 (42S02) : Table 'test.no_such_table' doesn’t exist

MySQL-specific error code SQLSTATE error code A text that describes.

These message typically have three components:
  A MySQL-specific error code.
  An SQLSTATE error code. These codes are defined by standard SQL and ODBC.
  A Text message that describes the problem.

Ch 21 Debugging MySQL Applications
  An information string is returned by statements that affect multiple

rows. This string provides a summary of the statement outcome:
mysql> INSERT INTO integers VALUES ('abc'), (-5), (null);
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warning: 3

  An operating system-level error might occur:
mysql> CREATE TABLE CountryCopy SELECT * FROM Country;
Error 1 (HY000): Can’t create/write to file './world.CountryCopy.frm'
(Errcode: 13)

Ch 21 Debugging MySQL Applications
  For case such as the preceding SELECT from a non0existent table, where all

three error values are displayed, you can simply look at the information
provided to see what the problem was. In other cases, all information might not
be displayed. The information string for multiple-row statements is a summary,
not a complete listing of diagnostics.

  An operating system error includes an Errcode number that might have a
system-specific meaning.

  You can use the following means to obtain assistance in interpreting diagnostic
information:

  The SHOW WARNINGS and SHOW ERRORS statements display warning and error
information for statements that produce diagnostic information.

  The perror command-line utility displays the meaning of operating system-related error
codes.

  There is a chapter in the MySQL Reference Manual that lists error codes and messages.

Ch 21 Debugging MySQL Applications
The SHOW WARNINGS STATEMENT
  MySQL Server generates warnings when it is not able to fully comply with a request or

when an action has possibly unintended side effects. These warnings can be displayed
with the SHOW WARNINGS statement.

mysql> CREATE TABLE integers (I INT UNSIGNED NOT NULL);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO integers VALUES ('abc'), (-5), (NULL);
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warning: 3

  When a statement cannot be executed without some sort of problem occurring,
the SHOW WARNINGS statement provides information to help you understand
what went wrong.

Ch 21 Debugging MySQL Applications
mysql> SHOW WARNINGS\G

Ch 21 Debugging MySQL Applications
SHOW WARNINGS with LIMIT
mysql> SHOW WARNINGS LIMIT 1,2\G

Ch 21 Debugging MySQL Applications
To know how many warnings, use SHOW COUNT(*) WARNINGS.
mysql> SHOW COUNT(*) WARNINGS;
+-------------------------------------+
 | @@session.warning_count |
+-------------------------------------+
 | 3 |
+-------------------------------------+

  Warnings generated by one statement are available from the server only for a
limited time. If you need to see warnings, you should always fetch them as soon
as you defect that they were generated.

Ch 21 Debugging MySQL Applications
“Warning” actually can occur at several levels of severity:
  Error messages indicate serious problems that prevent the server

from completing a request.
  Warning messages indicate problems for which the sever can

continue processing the request.
  Note messages are informational only.

mysql> SELECT * FROM no_such_table;
ERROR 1146 (42S02) : Table 'test.no_such_table' doesn’t exist
mysql> SHOW WARNINGS;

Ch. 21 Debugging MySQL Applications
mysql> DROP TABLE IF EXISTS no_such_table;
QUERY OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;

  To suppress generation of Note warnings, you can set sql_notes system variable
to zero:

mysql> SET sql_notes = 0;

Ch. 21 Debugging MySQL Applications
The SHOW ERRORS STATEMENT
  The SHOW ERRORS statement is similar to SHOW

WARNINGS, but displays only messages for error conditions. As
such, it shows only messages having a higher severity and tends to
produce less output than SHOW WARNINGS.

  SHOW ERRORS, like SHOW WARNINGS, supports a LIMIT
clause to restrict the number of rows to return. It also can be used
as SHOW COUNT(*) ERROR to obtain a count of the error
messages.

Ch. 21 Debugging MySQL Applications
The perror Utility
  Perror is a command-line utility that is included with MySQL distributions.
  The purpose of the perror program is to show you information about the error codes used

by MySQL when operating system-level error occur. You can use perror in situations
when a statement results in a message such as the following being returned to you.:

mysql> CREATE TABLE CountryCopy SELECT * FROM Country;
ERROR 1 (HY000): Can’t create/write to file './world.CountryCopy.frm'

  The error message indicates that MySQL cannot write to the file CountryCopy.frm, but
does not report the reason. To find out, run the perror program with an argument of the
number given following Errcode in the preceding error message.

Shell> perror 13
Error code 13: Permission denied.

Ch. 22 Basic Optimizations
Overview of Optimization Principles
There are several optimization strategies that you can take advantage of to make

your queries run fast.:
  The primary optimization technique for reducing lookup times is to use

indexing properly. This is true for retrievals (SELECT statement), and indexing
also reduces row lookup time for UPDATE and DELETE statements as well.

  The way a query is written might prevent indexes from being used even if they
are available. Rewriting the query often will alow the optimizer to use an index
and process a query faster.

  The EXPLAIN statement provides information about how the MySQL
optimizer processes queries.

  In some cases, query processing for a task can be improved by using a different
approach to the problem such as generating summary tables rather than
selecting from the raw data repeatedly.

  Queries run more efficiently when you choose a storage engine with properties
that best match application requirements.

Ch 22 Basic Optimizations
  The optimization is important for MySQL because it reduces query execution

time and it helps everyone who uses the server. When the server runs more
smoothly and processes more queries with less work, it performs better as a
whole.

  A query that takes less time to run doesn’t hold locks as long, so other clients
that are trying to update a table don’t have to wait so long. This reduces the
chance of a query backlog building up.

  A query might be slow due to lack of proper indexing. If MySQL cannot find a
suitable index to use, it must scan a table in its entirety. For a large table, that
involves a lots of processing and disk activity. This extra overhead affects not
only your own query, it takes machine resources that could be devoted to
processing other queries. Adding effective indexes allows MySQL to read only
the relevant parts of the table, which is quicker and less disk intensive.

Ch 22 Basic Optimizations
Using Indexes for Optimization
When you create a table, consider whether it should have indexes, because they have important

benefits:
  Indexes contain sorted values. This allows MySQL to find rows containing particular values

faster. The effect can be particularly dramatic for joins.
  Indexes result in less disk I/O. The sever can use an index to go directly to the relevant table

records. Furthermore, if a query displays information only from indexed columns, MySQL
might be able to process it by reading only the indexes and without accessing data rows at all.

MySQL supports several types of indexes:
A primary Key: Every value must be non-NULL
A UNIQE index: similar to Primary Key but it can be defined to allow NULL values
A Non-Unique index: This type of index is defined with the keyword INDEX or KEY.
A FULLTEXT: specially designed for text searching. (in MyISAM tables)
A SPATIAL: be used with the spatial data type. (not covered on MySQL cert exam)

Ch 22 Basic Optimizations
  An Index helps MYSQL perform retrievals more quickly than if no index is

used, but indexes can be used with varying degrees of success. Keep the
following index-related considerations in mind when designing tables:

  Declare an indexed column NOT NULL if possible. Although NULL values
can be indexed, NULL is a special value that requires additional decisions by
the server when performing comparisons on key values.

  Avoid over indexing. Unnecessary indexing can slows down table updates.
  An index on a column that has very few distinct values is unlikely to do much

good such as ENUM or SET data types.
  Index a column prefix rather than the entire column.Shortening the length of

key values can improve performance by reducing the amount of disk I/O
needed to read the index and by increasing the number of key values that fit
into the key cache.

  Avoid creating multiple indexes that overlap.
  Use ALTER TALBE to add indexes in the same statement. Avoid using

CREATE INDEX because it allows only one index to be added or dropped.

Ch 22 Basic Optimizations
Indexing Column Prefixes

mysql> CREATE TABLE t (name CHAR(225), INDEX (NAME));

If you index all 255 characters of the values in the name column, index processing
will be relatively slow:

  It’s necessary to read more information form disk
  Longer values take longer to compare.
  The index is not as effective because fewer key values fit into it at a time.

To overcome this problem, you can index only prefix of the column values.

mysql> CREATE TABLE t (name CHAR(225), INDEX (NAME(15)));

  To specify a prefix length for a column, follow the column name in the index
definition by a number in parentheses.

Ch 22 Basic Optimizations
Leftmost Index Prefixes
  In a table that has a composite (multiple-column) index, MySQL can use

leftmost index prefixes of that index. A leftmost prefix of a composite index
consists of one or more of the initial columns of the index. MySQL’s capability
to use leftmost index prefixes enables you to avoid creating unnecessary
(redundant) indexes.

  Note that a leftmost prefix of an index and an index on a column prefix are two
different things. A leftmost prefix of an index consists of leading columns in a
multiple-column index. An index on a column prefix indexes the leading
characters of values in the column.

mysql> SHOW INDEX FROM CountryLanguage\G

Ch 22 Basic Optimizations

Leftmost prefix of
the primary key

Ch 22 Basic Optimizations
General Query Enhancement
There are some general techniques to improve your query performance:

  Writing queries in a more efficient way.
  Using EXPLAIN to obtain optimizer information
  Optimizing queries by limiting output
  Using summary tables
  Optimizing updates

Ch 22 Basic Optimizations
Query Rewriting Techniques
  The way you write a query often affects who well indexes are used. Use the following

principles to make your queries more efficient:
  Don’t refer ti an indexed column within an expression that must be evaluated for every

row in the table. Doing so prevents use of the index.

Suppose that a table t contains a DATE column d that is indexed.

mysql> SELECT * FROM t WHERE YEAR >=1994;

mysq> SELECT * FROM t WHERE d >= '1994-01-01' Better. The index can be used.

  Indexes are particular beneficial for joins that compare columns from two tables.

mysql> SELECT * FROM Country, CountryLanguage WHERE Country.Code = CountryLanguage.CountryCode;

*** If neither the code nore CountryCode column is indexed, every par of column values
must be compared to find those pairs that are equal.

Ch 22 Basic Optimizations
  When comparing an indexed column to a value, use a value that has the same data type

as the column. If you are look for rows containing a numeric id value of 18 with either
of the following WHERE clause: (Both produce the same result)
 WHERE id = 18 Better
 WHERE is = '18' For string value, MySQL must perform a string-to-number conversion.

  In certain cases, MySQL can use an index for pattern-matching operations performed
with the LIKE operator. This is true if the pattern begins with a literal prefix value
rather with a wildcard character. An index on a name column can be used for a pattern
match like this:

 WHERE name LIKE 'de%'

 On the other hand, the following pattern makes LIKE more difficult for the optimizer:

 WHERE name LIKE '%de%'

 When a pattern starts with a wildcard character as just shown, MySQL cannot make
efficient use of any indexes associated with the column.

Ch 22 Basic Optimizations
Using EXPLAIN to obtain optimizer Information

mysql> SELECT * FROM t WHERE YEAR >=1994;

mysq> SELECT * FROM t WHERE d >= '1994-01-01'

To verify whether MySQL actually will use an index to process the second query, use the
EXPLAIN statement to get information from optimizer about the execution plans it
would use.

mysql> EXPLAIN SELECT * FROM t WHERE YEAR >=1994\G

Why this one is more efficient? Use EXPLAIN

Ch 22 Basic Optimizations

Rows scanned reduced from 867038 to 70968.

Ch 22 Basic Optimizations
Optimizing Queries by Limiting Output
  Some optimizations can be done independently on whether indexes are used. One way

to eliminate unnecessary output is by using a LIMIT clause. This helps in two ways:
  Less information need be returned over the network to the client.
  LIMIT allows the server to terminate query processing earlier than it would otherwise.

Some row-sorting techniques have the property that the first n rows can be known to be
in the final order even before the sort has been done completely. This means that when
LIMIT n is combined with ORDER BY, the server might be able to determine the first
n row and then terminate the sort operation early.

  Don’t use LIMIT to pull out a few rows from a gigantic result set. Instead, try to use a
WHERE clause that restricts the result so that the server doesn’t retrieve as many rows
in the first place.

  Another way to reduce query output is to limit it “horizontally”. It means select the
columns you need, rather than using SELECT * to retrieve all columns.

Ch 22 Basic Optimizations
mysql> SELECT * FROM Country WHERE Name LIKE 'M%';
mysql> SELECT name FROM Country WHERE Name LIKE 'M%';

  The second query is faster because MySQL has to return less information when you
select just one column rather than all of them.

  In addition, if an index on NAME exists, you can get even more improvement:
  The index can be used to determine quickly which Name values satisfy the condition in

the WHERE clause. This is faster than scanning the entire table.
  Depending on the store engine, the server might not read the table rows at all. If the

values requested by the query are in the index, then by reading the index MYSQL
already has the information that the client requested. For example, the MyISAM engine
can read the index file to determine which values satisfy the query, and then return them
to the client without reading the data file at all. Doing so is faster than reading both the
index file and the data file.

Better

Ch 22 Basic Optimizations
Using Summary Tables

Ch 22 Basic Optimizations

Ch 22 Basic Optimizations
Example: (creating a summary table containing the average GNP value of countries in each continent)

mysql> CREATE TABLE ContinentGNP SELECT Continent, AVG(GNP) AS AvgGNP FROM
Country GROUP BY Continent;

mysql> SELECT * FROM ContinentGNP;

Ch 22 Basic Optimizations
  Compare the summary table to the original table to find countries that have a

GNP less than 1% of the continental average:
mysql> SELECT Country.Continent, Country.Name, Country.GNP AS CountryGNP,

ContinentGNP.AvgGNP AS ContinentAvgGNP FROM Country, ContinentGNP WHERE
Country.Continent = (ContinentGNP.Continent) AND Country.GNP < ContinentGNP.AvgGNP * .
01 ORDER BY Country.Continent, Country.Name;

Ch 22 Basic Optimizations
  Use the summary table to find countries that have a GNP more than 10 times

the continental average.

mysql> SELECT Country.Continent, Country.Name, Country.GNP AS CountryGNP,
ContinentGNP.AvgGNP AS ContinentAvgGNP FROM Country, ContinentGNP WHERE
Country.Continent = ContinentGNP.Continent AND Country.GNP > ContinentGNP.AvgGNP * 10
ORDER BY Country.Continent, Country.Name;

Ch 22 Basic Optimizations
  Use of summary tables has the disadvantage that the records they contain are

up to date as long as the original values remain unchanged. If the original table
rarely or never changes, this might be only a minor concern.

  For many applications, summaries that are close approximations are
sufficiently accurate.

  The summary table technique can be applied at multiple levels. Create a
summary table that holds the results of an intial summary, and then summarize
that table in different ways to produce secondary summaries. This aviods the
computational expense of generating the initial summary repeatedly.

Ch 22 Basic Optimizations
Optimizing Updates
Optimization techniques can be used for statements that update tables.
  For a DELETE or UPDATE statement that uses a WHERE clause, try to write

it in a way that allows an index to be used for determining which rows to delete
or update.

  EXPLAIN is used with SELECT queries, but you might also find it helpful for
analyzing UPDATE and DELETE statements. Write a SELECT that has the
same WHERE clauses as the UPDATE or DELETE and analyze that.

  USE multiple-row INSERT statement instead of of multiple single-row
INSERT statements.

Query is shorter. Less
information to send to the
server. It allows the
server to perform all the
updates at once and flush
the index a single time.
This optimization can be
used with any storage
engine.

Ch 22 Basic Optimizations
  If you’re using an InnoDB table, you can get better performance even for single-row statements by

grouping them within a transaction rather than by executing them with autocommit mode enabled:

mysql> START TRANSACTION;
mysql> INSERT INTO t (id, name) VALUES(1, 'Bea')
mysql> INSERT INTO t (id, name) VALUES(2, 'Belle')
mysql> INSERT INTO t (id, name) VALUES(3, 'Bernice')
mysql> COMMIT;

  Using a transaction allows InnoDB to flush all the changes at commit time. In autocommit mode,
InnoDB flushes the changes for each INSERT individually.

  For any storeage engine, LOAD DATA INFILE is even faster than multiple-row INSERT
statements.

  You can disable index updating when loading data into an empty MyISAM table to speed up the
operation. LOAD DATA INFILE does this automatically for non-unique indexes of the table is
empty.

  To replace existing rows, use REPLACE rather than DELETE plus INSERT.

Ch 22 Basic Optimizations
Choosing Appropriate Stroage Engine
  It is important to choose a storage engine that uses a locking level appropriate for

the anticipated query mix when you create a table.
  MyISAM table-level locking works best for a query mix that is heavily skewed

toward retrievals and includes few updates.
  Use InnoDB if you must process a query mix containing many updates. InnoDB’s

use of row-level locking and multi-versioning providing good concurrency for a
mix of retrievals and updates.

  Different MyISAM storage formats have different performance characteristics. This
influences whether you choose fixed-length or variable-length columns to store
string data.

  Use fixed-length column (CHAR, BINARY) for best speed
  USE variable-length columns (VARCHAR, VARBINARY, TEXT, BLOB) for best

use of disk space.
  Another option with MyISAM tables is to use compressed read-only tables.

Ch 22 Basic Optimizations
  For InnoDB tables, it is true that CHAR columns take more space on

average than VARCHAR. There is no retrieval speed advantage for
InnoDB as there is with MyISAM, because the InnoDB engine
implements storage for both CHAR and VARCHAR in a similar way.
Retrieval of CHAR values might be slower because on average they
require more information to be read from disk.

  MERGE tables can use a mix of compressed and uncompressed tables.
This can be useful for time-based records. For example, if you lo
records each year to a different log file, you can use an uncompressed
log table for the current year so that you can updated it, but compress
the tables for past years to save space. If you then create a MERGE
table from the collection, you can easily run queries that search all
tables together.

(More information about storage engine-specific optimizations can be found in chapter 38.)

